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We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [Bull.
Seismol. Soc. Am. 57, 341 (1967)] with stick-slip dynamics. The solutions of the model in the low
velocity regime represent earthquakes in a simple transform fault and have chaotic behavior [J. M.
Carlson and J. S. Langer, Phys. Rev. Lett. 62, 2632 (1989); Phys. Rev. A 40, 6470 (1989)]. It has
been shown recently that in a higher velocity regime there are solutions of the model with periodic
boundary conditions that are solitonlike and not necessarily chaotic [J. Schmittbuhl, J. P. Vilotte,
and S. Roux, Europhys. Lett. 21, 374 (1993)]. We show here that stable, nearly periodic solutions
also exist in a certain window of parameter space when the model has free boundary conditions.
These solutions are periodic in both time and space and display striation effects that are strikingly
similar to those seen experimentally by Gollub and co-workers. [Phys. Rev. A 43, 811 (1991);
Phys. Rev. E 47, 820 (1993)]. For an arbitrary disordered set of initial conditions, the short-time
behavior is noisy, but the stable nearly periodic solutions emerge in the long-time limit. We discuss
the origin of the window and show that the nature of the solution found depends strongly on the
boundary condition. We also discuss the effects of symmetry breaking and disorder and show that
even in a highly disordered regime the system can spontaneously organize itself so that very nearly
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stable noise-free solutions emerge.

PACS number(s): 05.40.+j, 91.30.—f, 64.60.Cn, 62.30.+d

I. INTRODUCTION

Burridge and Knopoff [1] introduced a dynamical
model of plate tectonics in which the material between
two plates is represented by an elastically coupled ar-
ray of slider blocks. The blocks are coupled elastically
to one plate and coupled to the other plate via a stick-
slip friction function. The elastically coupled plate moves
with constant velocity v and the other plate is fixed. A
more recent one-dimensional version of the model has
been discussed by Carlson and Langer [2] in which the
friction function for a given slider depends on the ve-
locity of the slider relative to the fixed plate and de-
creases with this velocity. They demonstrated that this
homogeneous model had chaotic solutions and appeared
to behave in the fashion usually described by the phrase
“self-organized criticality.” In their numerical solution
slipping events take place in an apparently random fash-
ion and the number of particles involved in each event
varied over the whole range from 1 to IV, where N is the
total number of particles in the system. They used free
boundary conditions and their model is embodied in the
equations

d2X.
m dltzJ = ke(Xj+1 — 2X; + X;1)
—kyp(X; — vt) + F(X;), (1)
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d2X1 Y
m— = k(X2 — X1) — kp(Xy —vt) + F(X1), (2)
a2X ;
’dt—z’N =ko(—Xn + Xn-1) — kp(Xn — vt) + F(Xn).

3)

The nonlinear friction function F(X;) for slider j is de-
fined as follows. It balances the sum of the elastic forces
on slider j if (i) the modulus of the sum is less than a
threshold Fy and (ii) XJ-, the velocity of slider j, is zero.
If the sum lies outside this range and X]- is zero, then the
sum is reduced by *+Fy. Finally, if the velocity V = Xj
of the slider is nonzero, then the friction function is given

by

Schmittbuhl et al. [3] have discussed the same model
with periodic boundary conditions (i.e., on a circular
chain) over a different range of values of the parameters
and found that a soliton mode is possible and they have
also discussed the energetics which govern the appear-
ance of this mode. They found that if the power input
from the moving plate is sufficient to balance the power
dissipated by a soliton mode, then the mode appears
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after the system matures. A similar statement can be
made about multiple soliton modes. Any power input in
excess of that dissipated by solitons is dissipated chaoti-
cally. The soliton mode has a characteristic spatial width
and a characteristic velocity. There is a question about
whether their parameters and boundary conditions real-
istically describe a tectonic system. Nevertheless, their
result is of considerable interest and may have application
to other physically important observable phenomena.

In this paper we discuss the same model in a different
parameter range with free boundary conditions which are
probably more realistic. We find that there is a narrow
window in parameter space in which the system settles
down to a form of behavior that is periodic in time (or
nearly so) and spatially ordered, independent of the con-
ditions defining the initial positions and velocities of the
sliders. This spatial ordering is carried by waves which
propagate in from the ends of the chain; it is therefore not
surprising that Schmittbuhl et al. did not observe such
a mode for their system has no ends. The nature of the
boundary conditions on the ends of the chain has a strong
effect on the nature of the solution. This is quite an inter-
esting point because it is usually assumed that the effects
of the boundary conditions decay into the bulk. While
the solution is periodic (or nearly so) in both space and
time, it is not a normal mode of the system; indeed it can
be shown that at any instant most of the sliders have zero
velocity. The spatial ordering is strongly reminiscent of
the striation effects seen in some experimental systems
by Rubio et al. [4] and Vallette and Gollub [5] and it
may have some relevance to striation phenomena which
appear in some other dynamically driven systems. Ex-
amples of these are cloud patterns seen on the lea side of
mountain ranges, variations in luminescence in badly ad-
justed fluorescent tubes, and the flow of congested traffic
behind a traffic light. The system also has an interesting
adaptive behavior and seems under many circumstances
to select a mode of motion which is adapted to minimize
energy expenditure for the given set of parameters.

II. RESULTS AND DISCUSSION

The method of solution is numerical. We use a version
of the simplest Runge-Kutta scheme which is adapted
to deal with the discontinuity in the friction function.
The method cannot be expected to give accurate solu-
tions over a long time span because, for example, slowly
accumulating errors in the phase when the solution is
periodic can give large phase shifts. Also small errors
can eventually have large effects when the solution is in
the chaotic regime. But over short time spans (which
are nevertheless long compared with the periodicity) and
for statistical properties the method should be reliable.
This has been verified by various internal checks such as
changing the time step and varying the initial conditions.
These leave most of the relevant properties unchanged.
(Those that do change will be pointed out below.) We
have also checked our method by comparing our results
with those previously found by Carlson and Langer [2]
and by Schmittbuhl et al. [3]. The results are the same

in all relevant respects.

One important quantity is the total elastic force act-
ing on the chain P(t). This is the sum of all the terms
proportional to k, in Egs. (1)—(3) above. The terms pro-
portional to k. add up to zero. The force trace P(t) is
presented in Fig. 1 for the parameter set shown in the
caption with different values of Fy. The same set of ini-
tial conditions is used in each case, but these conditions
are extreme and disordered and the system is initially
far from equilibrium. It can be seen that if Fy = 15 or
40 the force trace is always noisy, but the width of the
trace eventually settles down to a relatively small value
when the influence of the extremely unrepresentative ini-
tial conditions decays. (For more extreme values of Fy
the width remains large.) For the remaining values of Fj
the initial noisy behavior is of limited duration and the
force trace eventually settles down to a nearly periodic
form. The real part of the Fourier transform of the force
trace II(w) illustrates the point nicely in Figs. 2 and 3 for
Fy = 15 and 30, which are reasonably representative val-
ues. If Fy = 15, then we have an extremely noisy Fourier
transform with no sharp features. If Fy = 30, then we
have a Fourier transform with a sharp feature near w = 6
units and other sharp features at the harmonics. There
is also a small amount of noise centred near w = 3 units.
The nearly periodic behavior persists for as long as we are
able to run the program, i.e., for a very long time indeed.
Some quantities are independent of the initial conditions
and the time step of the integration. These are the sharp
frequency and the mean value of the force trace in the
steady region, but the amount of noise and the width of
the force trace and the phase depend somewhat on these
variables. The window in which the periodic solutions
appear is well defined with sharp edges at values of Fjy
of 16.6 and 37. We also find that the range of values of
the driving velocity v in which the phenomenon can be
observed lies between v = 0.42 and 0.72 when Fy = 20
and all other parameters remain fixed.
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FIG. 1. Some force traces P(t) plotted against time ¢ for
the parameters N = 100, v=0.6, k.=40, k,=50, and Fo=15,
17, 20, 25, 30, and 40, starting with Fo=15 on the lowest
curve and ending with Fo=40 on the highest.
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FIG. 2. Fourier transform II(w) of the force trace for
Fo=15. Note the lack of structure and the large amplitude of
the noise.

We try to understand the reason for these phenomena
by examining snapshots of the positions of the sliders. In
Figs. 4 and 5 the configuration of the chain is shown for
Fy = 15 and 20 at a late time when the trace has settled
down. Longitudinal displacements are plotted laterally
for clarity of presentation. No spatial order is discernible
for Fy = 15, but for Fy = 20 the chain is in a highly or-
dered state with a disjunction at position 86. There ap-
pear to be four waves passing down the chain from each
end meeting and annihilating at position 86, i.e., there
appear to be eight waves altogether. This is a moiré effect
due to the fact that the displacement is presented at the
discrete atomic positions only. There are actually only
two carrier waves: one, a wave of compression moving
inwards from the left, and the other, a wave of dilation
moving inwards from the right. We can distinguish be-
tween waves of compression and dilation in this situation
by contrast with elastic waves: in the rightward moving
compressional wave the sliders on the downward slope to
the right of a crest are moving to the right whereas the
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FIG. 3. Fourier transform II(w) of the force trace for
Fy=30. Note the clear structure and the small amplitude
of the noise.
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FIG. 4. Configuration of the chain after a long time when
Fy=15 and N=200. The line is a guide to the eye and longi-
tudinal displacements are plotted laterally for clarity of pre-
sentation.

remaining sliders are still; however, in the leftward mov-
ing dilational wave the sliders on the upward slope to the
left of a crest are moving to the right also whereas the
remaining sliders are still. In other words, both waves
carry matter to the right in the same direction as the
driving velocity. Most of these features are independent
of the initial conditions and the details of the method of
integration. Only the position at which the two inward
moving waves collide and their relative phases vary as we
change these factors. The relative phase of the two waves
at the point of collision governs the amount of noise and
the width of the force trace in the long time region. If the
waves meet nicely in phase then there is very little noise
and the width is extremely narrow. These results are ab-
solutely characteristic of the solutions in the parameter
region examined and we have found that they hold in all
of the many tens of cases examined. The situation is also
illustrated in Fig. 6 where the positions are plotted at
two successive instants of time.

A clue to understanding these results can be found in
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FIG. 5. Configuration of the chain after a long time when
Fo=20 and N=200. The point of disjunction is at site 86 and
always remains there.
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FIG. 6. Central portion of the chain at two successive late
time instants. The convergence of the compressional and di-
lational waves on the point of disjunction can clearly be seen.

some snapshots of the positions of the sliders starting
shortly after the beginning of a run. These are shown
in Fig. 7 and it can be seen that the waves start at the
ends of the chain and move to the center, thus taming the
chaotic region in the middle of the chain. The instant at
which they collide coincides with the instant at which the
force trace becomes quiet. The situation is that the wave
is stabilized by the interaction of the sliders in the bulk
of the chain and the end sliders which have a different
environment. If the frequency of the oscillations of the
end sliders matches a frequency with which a wave can
propagate down the chain, then the phenomenon can be
observed. This condition defines the window in param-
eter space in which the phenomenon occurs. This state-
ment can be verified by forcing the end sliders to move
with whatever frequency we wish and by observing the
subsequent motion of the chain. The window in parame-
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FIG. 7. Configuration of the chain at a two successive early
times when Fo=20 and N=200. This shows the convergence
of the two waves on the central chaotic region and its destruc-
tion.
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FIG. 8. Central portion of the chain at two successive late
time instants. An impurity with Fo=30 is placed at site 113
(marked with a dashed arrow) and the value of Fy elsewhere
is 20. The point of disjunction is marked with a solid arrow.
The change of phase at the impurity site can be seen clearly.

ter space in which the phenomenon occurs is now wider,
corresponding to the fact that we no longer have to rely
on the free oscillations of the end sliders to generate the
waves. This actually enables us to find the window in
which regular waves can propagate down the chain. The
importance of the end conditions is now clear and it is
now obvious why the phenomenon cannot be seen in a
chain with periodic boundary conditions.

We now investigate the effect of broken symmetry on
the results. We first change the value of F; on one site
from the otherwise uniform value of 20. If F on the
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FIG. 9. The chain at two successive intermediate times.
An impurity with Fo=40 is placed at site 113 (marked with
a dashed arrow) and the value of Fy elsewhere is 20. The
impurity site acts as the source of two outward-traveling waves
and these meet the waves coming in from the ends of the chain
at the points marked by solid arrows. At these times the force
trace displays beats. At later times the outward-traveling
waves overcome the inward-traveling waves and reach the ends
of the chain. At these later times the force trace is quiet.
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FIG. 10. The chain at a late time. An impurity with Fo=50
is placed at site 113 and the value of Fy elsewhere is 20. Two
inward-traveling waves meet and annihilate at the impurity
site.

site in question is less than 35, then our results are un-
changed, except that one inward-traveling wave passes
through the disturbed site with a change of phase and
the two inward-traveling waves collide at some other site,
which is determined by the initial conditions (see Fig. 8).
If, on the other hand, Fj lies between 35 and 45, the os-
cillations of the disturbed site act as a source of outward-
traveling waves which propagate to the ends of the chain,
thus overcoming the inward-traveling waves which origi-
nate at the ends (see Fig. 9). In both of these cases the
force trace becomes quiet. However, if Fy > 45, then
we have two inward-traveling waves, neither of which
passes through the disturbed site. If the right-traveling
wave reaches the disturbed site first, then it ends there
and there is a disordered region to the right of the site
which shrinks when the left-traveling wave reaches the
site. Thus the two waves ultimately collide at this site
and the force trace becomes quieter (see Fig. 10). These
phenomena are observed for all possible positions of the
disturbed site so that in a long chain a simple broken
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FIG. 11. Configuration of the chain with a disordered array
of threshold parameters Fy(7) at a time instant when the force
trace is quiet. The plate velocity v is 2.75 and the chain
stiffness k. is 100. The configuration is significantly more
ordered than it is at a time when the force trace is noisy.
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FIG. 12. Force trace for a chain with a disordered array of
theshold parameters Fo(j). The trace is quiet for long time
intervals interrupted by short noisy intervals.

symmetry is not sufficient to ensure completely chaotic
behavior and a quiet force trace can be obtained in situ-
ations of broken symmetry. There is clearly quite a rich
variety of phenomena which may be reflected in the be-
havior of some experimental systems.

A more serious degree of disorder has more drastic ef-
fects. We have varied Fy(j) randomly from site to site so
that the mean is 27 and the standard deviation is 8.5. We
find that under the normal operating conditions where v
is 0.6 and all the other parameters have the same val-
ues as before, the resulting force trace P(t) is extremely
broad and noisy at all times. If we increase the value of v
to 2.75 and increase k. to 100, then we find another win-
dow where the force trace settles down to rather stable,
quiet behavior after a long time, but it has no signifi-
cant periodic component. The quiet behavior seems to
be associated with a hand-over-fist ladder-climbing mode
of motion of all the sliders in the chain, but is not yet
further understood (see Fig. 11). If only a small number
of the sliders behave in a different fashion then the noise
is much larger. These results seem to be independent of
the initial conditions and the exact choice of a random
configuration of Fy(j) on the chain. The time taken for
the force trace to settle down is very variable however
and the distribution of these times considered as random
variables might be interesting and provide a clue to some
long-time nonexponential decay phenomena. The quiet
solution is stable for very long times, but can eventu-
ally become unstable again (see Fig. 12). The reason for
the disruption in the stability is not understood. If we in-
crease the value of v further then the force trace becomes
noisy again at all times. It seems to us remarkable that
in chains with such a large degree of disorder the system
can organize its motion spontaneously so as to move qui-
etly. It would obviously be interesting to see if there are
any experimental systems with this behavior. There may
also be wider implications of this type of behavior.

III. CONCLUSION

We have carried out a numerical study of a one-
dimensional Burridge-Knopoff N-site chain with stick-
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slip dynamics and free end conditions. We have
shown that there are circumstances in which stable, or-
dered, oscillatory solutions which are relatively noise-
less emerge spontaneously when chaotic solutions are ex-
pected. These stable solutions originate in the oscilla-
tions of the ends of the chain which drive waves of com-
pression or dilation into the center. When the waves meet
they annihilate and result in the stable solution. The
window in parameter space in which this can occur is de-
termined by a matching condition in which the frequency
of the oscillations of the ends matches the frequency with
which an oscillatory wave can propagate down the chain.

We have also investigated the effect of breaking the
symmetry by disturbing the value of one parameter at
one unsymmetrically placed site. We find that the sta-
ble, ordered, oscillatory solutions again emerge sponta-
neously, but the configuration of the chain responds in
a fashion that can be relatively easily understood. The
emergence of these stable, quiet solutions is possibly sur-
prising in view of the contrasting behavior of a two-site
chain which behaves chaotically when the symmetry is
broken by disturbing one site [6].

We have finally investigated the behavior of a disor-
dered chain with a random array of threshold parameters
Fo(j7). It is very remarkable that in this case also quiet,
rather stable, nearly ordered solutions emerge in certain
parameter ranges.

We also note the similarity between our results and the
experimental results of Gollub and co-workers [4,5] where
local disturbances propagate in successive pulses down

the system. Their results are not periodic or noiseless
in the parameter region examined experimentally, but
there is some indication of a characteristic frequency in
Fig. 9 of Ref. [4]. It might be worth examining a wider
region and it might also be worth disturbing the ends of
their system periodically in the fashion described in the
present text to see whether results comparable to ours
can be obtained.

Another interesting feature is the similarity of the
mode of motion of the uniform chain to the mode of
locomotion of a millipede which moves by propagating a
nearly periodic succession of pulses down its array of legs.
A difference is that the millipede almost certainly con-
trols the pulses using a neurological mechanism whereas
our chain settles spontaneously into the ordered state and
does not use an extrinsic controlling mechanism. The
common feature may be that the ordered correlated mo-
tion is probably the most efficient means of transport-
ing the system (or the animal) in the sense that it re-
quires the least power input. The animal has obviously
evolved in a Darwinian fashion so that it moves in the
most energy-efficient manner; the system moves chaoti-
cally initially sampling its phase space in a quasiergodic
manner and eventually selects a mode of motion in which
the power input just matches the power expended dissi-
patively. Once the system has found this efficient mode it
cannot escape into a less efficient mode unless the power
input exceeds the power dissipated and some elastic en-
ergy builds up in the chain to be expended chaotically
later.
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